Basic of Logic Gates
The Boolean
algebra can represent the logic gates.Boolean
algebra operator can be explain by using truth table.
The truth table
for Boolean algebra :
AND Truth Table |
OR Truth Table |
NOT Truth Table |
XOR Truth Table |
one value,0
and1.
To show the
logical circuit we can use graphical symbol to understand it.
Combination Circuits
Simple
combination circuit:
Boolean Equation
Boolean
equation can be represent in two form:
1. Sum of
Product (SOP)
example:
F=A’B+ABC
Therefore,
F=A’BC+A’BC’+ABC
2. Product
of Sum (POS)
example
F=(A+C)(A’+B’+C)(B)
pic
Therefore,
F=(A'+B'+C)+ (A'+B+C')+(A'+B+C)+(A+B'+C)+(A+B+C')+(A+B+C)
Laws of Boolean Algebra
Boolean
expression can be simplify and manipulate by using the basic laws to help you
manipulating Boolean Algebra equation.
1. Identity
Law
AND form: A(1)=A
OR form: A+0=A
2. Zero and
One Law
AND form: A(0)=0
OR form: A+1=1
3. Inverse
Law
AND form: A(A’)=0
OR form: A+A’=1
4. Idempotent
Law
AND form: A(A)=A
OR form: A+A=A
5.Commutative
Law
AND form: A(B)=B(A)
OR
form: A+B=B+A
6.Associative
Law
AND form: A(BC)=(AB)C
OR form: A+(B+C)=(A+B)+C
7.Distributive
Law
AND form: A+(B(C))=(A+B)(A+C)
OR form: A(B+C)=AB+AC
8.Absorption
Law
AND form: A(A+B)=A
OR form: A+(AB)=A
A+(A’B)=A+B
9.DeMorgan’s
Law
AND form: (A’B’)=A’+B’
OR form: (A’+B’)=A’(B’)
No comments:
Post a Comment